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The dynamic shear behaviour of oriented linear polyethylene has been studied with particular reference 
to previous studies of the dynamic tensile modulus. First, it has been shown that the increase in the 
-50°C plateau shear modulus with draw ratio can be understood on a Takayanagi-type model in terms 
of an increase in crystal continuity. The crystal continuity is estimated from the longitudinal crystal 
thickness and the long period on the basis of the random crystalline bridge model. At a similar level of 
sophistication it is also possible to explain the cross-over in the ranking of samples of increasing draw 
ratio with change of temperature. The dynamic mechanical behaviour is then considered in terms of a 
simple extension of this Takayanagi model in which crystalline sequences which span two or more 
adjacent lamellae are regarded as the fibre phase in a short fibre composite. It can be shown that this 
model gives a satisfactory prediction of the changes in dynamic tensile modulus and loss with 
temperature, for a range of samples with different degrees of crystal continuity. 
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INTRODUCTION 

In a number of previous publications ~-4 we have 
presented our interpretation of the dynamic tensile 
behaviour, the thermal expansion and the thermal 
conductivity of ultra-oriented LPE in terms of present 
knowledge of the structure of these materials. In this 
paper, the dynamic shear behaviour is presented and its 
relationship to dynamic tensile behaviour discussed. 

First, it will be shown that the increase in the -5 0 ° C  
plateau shear modulus with draw ratio can be understood 
on the basis of the Takayanagi model in terms of the 
increase in crystal continuity. At a similar level, it is also 
possible to explain the cross-over in the ranking of 
different samples with change of temperature. 

The dynamic shear data are then combined with 
dynamic tensile data to examine the validity of a simple 
model, in which the oriented polymer is regarded as a 
short fibre composite, the fibre phase consisting of 
crystalline sequences which span two or more adjacent 
lamellae. It will be shown that the model provides a 
consistent understanding of the changes in dynamic 
modulus and loss with temperature, for a range of samples 
with different degrees of crystal continuity. 

EXPERIMENTAL 

Preparation of samples 
Oriented rods of linear polyethylene were prepared by 

hydrostatic extrusion at 100°C of solid cylindrical billets 
through a conical die to a final bore diameter of 2.5 ram. 
Deformation ratios in the range 5 to 25 were used. Further 
details of the hydrostatic extrusion process are given in 
previous publications 1'5. In this paper we describe results 
for Rigidex 50, a linear homopolymer manufactured by 
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BP Chemicals International Ltd, which has weight- 
average and number-average molecular weights of 
101 450 and 6180 respectively. 

Characterization of samples 
Wide angle X-ray diffraction of all samples showed that 

the crystallite orientation was in all cases very high. We 
have also made use of X-ray diffractometry studies, which 
have been reported previously 6, to provide estimates of 
/3002, the average crystalline dimension of the c direction. 
These results, together with values of the long period L, 
determined by small angle X-ray diffraction, have been 
used to provide a measure of crystalline continuity. 

Mechanical measurements 
The dynamic shear measurements were undertaken at 1 

Hz using a free oscillation torsion pendulum of the 
counter balanced inertia arm type, similar to that adopted 
by Heijboer and co-workers 7. In this equipment the 
sample is rigidly clamped at its lower end to the base of the 
apparatus and to a rod supported by the counter balance 
at the upper end. A beam of light is reflected from a mirror 
attached to the upper clamp, such that it falls on a split 
photocell. The photocell assembly then follows the 
deflected light beam and a pen traces the oscillations on a 
chart recorder. The shear modulus is calculated from the 
frequency and tan 6 from the logarithmic decrement of the 
free oscillations. 

It has been shown that end effects due to localized stress 
concentrations near the grips can significantly affect the 
results of torsional measurements on highly anisotropic 
materials 8. We therefore took especial care to reduce these 
effects to a negligible order of magnitude by ensuring that 
the aspect ratio of the samples was very high, a value of 
40:1 (length between clamps/diameter) being adopted. As 
already indicated the oriented samples were of circular 
cross-section. The isotropic sample was of rectangular 
cross-section and was machined from an injection 
moulded rod. The machining operation was performed to 
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Figure la The dynamic shear modulus G' as a function of tem- 
perature for samples of different draw ratio (R A) 

remove the surface layers of the rod, and hence eliminate 
any possible effects due to oriented surface layers. The 
rectangular cross-section was dictated solely by 
convenience of the machining operation and is not 
expected to have any significant effect on the results. 

Measurements were carried out in the temperature 
region from ambient down to - 150°C by blowing cold 
nitrogen gas into a thermally insulated chamber 
surrounding the samples. An additional measurement at 
-196°C was made possible by introducing liquid 
nitrogen into the chamber. Temperatures between 
ambient and 100°C were achieved by passing heated 
nitrogen into the chamber. 

There is evidence from previous studies that these 
highly oriented samples are thermally stable up to at least 
100°C, and only at higher temperatures do structural 
changes due to recrystallization and lamellar thickening 
occur. To avoid any changes due to such effects we 
therefore selected 100°C as the maximum temperature of 
measurement and as a further precaution all samples were 
held at this temperature for at least 20 min before 
measurements commenced. 

For measurements made in the low temperature 7 
relaxation region, care was taken to reduce the 
temperature fairly slowly over a period of one hour or 
more, since it is known that rapid quenching can result in 
spurious time-dependent effects on tan 6, which have been 
attributed to the relaxation of localized thermal strains at 
a morphological level. 

The dynamic tensile measurements have been reported 
in our previous publication 1, where full details are given. 
Dynamic three point bend tests were undertaken at 3.6 Hz 
on samples of very high aspect ratio, to minimize shear 
and end effects. As in the case of the torsion 
measurements, especial care was taken to change the 
sample temperature slowly, so as to eliminate spurious 
effects on the mechanical behaviour. 

RESULTS 

Figure la shows the storage modulus, G', as a function of 
temperature for the extruded and isotropic samples. All 
sets of curves show the general features observed 
previously: the two plateaux, below -196°C and at 

- 50°C, and the drop in modulus at higher temperatures 

due to the onset of the s-relaxation. However the change 
in G' with increasing deformation ratio is much less 
spectacular than the changes in the Young's modulus, E', 
and the curves tend much more to approach a single 
envelope at high deformation ratios. The results for E' and 
tan 6 E have been reproduced in this paper in Figures 5a 
and 5b, where they are shown in order to enable a 
comparison with the theoretical modelling. The amount 
by which G' drops with temperature, both in the low 
temperature (7) region, and the high temperatures, 
decreases considerably with increasing deformation ratio. 
Indeed the curve for the 2 = 25 sample shows an overall 
degree of temperature dependence which is remarkably 
low for a semicrystalline polymer. The cross-over between 
the G' values for isotropic and oriented samples in the 7- 
region is particularly noteworthy and its significance will 
be discussed later. 

The curves for the loss factor, tan6G, shown in Figure lb 
also show the ~ and 7 relaxations observed previously, and 
it is remarkable that although the intensity of these 
relaxations, as measured by tan&, decreases with 
increasing deformation ratio, their shape and position 
changes very little. In all these respects, there is again a 
close similarity with the previous measurements of tan6E. 

DISCUSSION 

The structure of ultra-oriented LPE 
It has been shown 1 that the dynamic tensile behaviour 

of drawn and extruded LPE could be very well explained 
in terms of a model for the structure in which the lamellar 
stacks characteristic of low draw material becotne 
increasingly linked by randomly arranged crystalline 
bridges as the draw ratio is increased. This model is 
consistent with the very high crystallite orientation for all 
drawn material, the retention of a two point small angle 
X-ray diffraction pattern which diminishes in intensity 
with increasing draw, and the observation that the 
average crystal length increases to a value of ~ 500 ~ for 
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Figure Ib Tan 6 G (shear) as a function of temperature for samples 
of different draw ratio 
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Figure 2 A schematic structure of  ultra-oriented polyethylene 
showing lamellae linked by intercrystalline bridges 

the mostly highly drawn material (cf. constant long period 
~ 200 ~). 

To make the quantitative connection between the 
dynamic tensile behaviour and structure it was considered 
that the degree of crystalline continuity can be related to a 
single parameter p which defines the probability that a 
crystalline sequence traverses the disordered regions to 
link two adjacent lamellae. The lengths of the crystalline 
sequences (i.e. the crystal length distribution) are then 
determined by statistics exactly analogous to those for a 
stepwise condensation polymerization, p can be 
determined from measurements of the integral breadth of 
the (002) reflection which gives the weight average 
crystalline sequence length in c-axis direction,/3002, and 
the small angle X-ray long period L. Even for the highest 
deformation ratio (~  30) (obtainable by drawing) it was 
found that p did not exceed 0.4, which implies that the 
majority of the crystalline bridges only span adjacent 
lamellae. A diagrammatic representation of the structure 
is shown in Figure 2 and the essential correctness of the 
model has recently been confirmed by dark field electron 
microscopy 9 and nitric acid etching followed by gel 
permeation chromatography 1°. 

Shear modulus values at low temperature 
Comparison of isotropic bulk polymer with low draw ratio 

oriented polymer. At low draw ratios there is negligible 
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crystalline continuity and the structure can be regarded as 
alternating crystalline and amorphous material, the 
crystalline regions being highly oriented. This is the so- 
called parallel lamellar texture, identified by the typical 
two-point small angle X-ray diffraction pattern. For such 
samples we may therefore consider an idealized structure 
in which the crystalline 'e' axes are fully aligned in the 
extrusion direction and the 'a' and 'b' axes are randomly 
aligned perpendicular to the extrusion direction such that 
the macroscopic sample appears to be transversely 
isotropic. 

The calculation of the longitudinal shear modulus of 
such a sample can readily be performed if one assumes 
homogeneity of either stress or strain, the results obtained 
being commonly referred to as the Reuss average 
(homogeneous stress) or Voigt average (homogeneous 
strain)l 1. The problem can be separated into two steps. 
First, an average longitudinal crystal modulus must be 
calculated, then this must be combined in a consistent 
fashion with the amorphous modulus. 

The explicit equations for the average crystalline shear 
modulus (Go) in terms of the crystal compliance (S 0 or 
stiffness (Cij) matrix elements are:-- 

Isotropic case 

Reuss G~ 1~-1~5 S11-~- $22 ~- $33)-1~5 Sl2-~ $23-~- S12 ) 
71- 5($44 -~- $55 -~- $66) (1) 

Voigt G~ =-~55 Cl1-t-C22-[-C33)-155(612-t-C23--}-C13) 
-['- ~(C44 + C55 ~- C66 ) (2) 

Transverse isotropy 
Reuss Ge- 1 = ~($44 + $55) (3) 

Voigt Gc =~(C44+ C55) (4) 

The values of Ge calculated by the above expressions 
and using the theoretical Sij and Cij of Tadokoro et al.1 z 
are quoted in Table 1. 

We then calculate the sample modulus G for a sample of 
crystallinity Z and amorphous modulus Ga using one of 
the following expressions: 

Reuss G-I =zG -I + ( I _ z G .  l (5) 

Voigt G =zG c+(1 -Z)Ga (6) 

Table 1 Summary of theoretical calculations of the shear modulus 
of oriented or isotropic samples, with assumed crystallinity 0.8, 
for different values of amorphous shear modulus. (Average crystal 
moduli calculated from Tadokoro eta/.). All data in GPa 

Isotropic sample Oriented sample 

Reuss Voigt Reuss Voigt 
average a v e r a g e  a v e r a g e  average 

Average crystal 
shear modulus 3.08 23.5 2.15 2.4 

Predicted 
sample moduli 
for 

G a = 0.3 
1 
2 
3 

1.08 18.9 0.96 1.98 
2.18 19.0 1.75 2.12 
2.78 19.2 2.12 2.32 
3.06 19.4 2.28 2.52 

POLYMER, 1982, Vol 23, March 351 



Shear and tensile relaxation in linear PE." A. G. Gibson et al. 

a t 

I Crystal 

Crystal 

.,--I -X-~ 

Amorphous 

t 
b I 

Crystal 

~--I-~--. 

I 

Crystal 

Amorphous 

T 
modulus in terms of the Takayanagi model, shown in 
Figures 3a and b. The Series-Parallel arrangement gives a 
value for the shear modulus of the oriented polymer G~, 

(7) 

where G c, Ga are the shear moduli of the crystalline and 
amorphous phases respectively and 2, ~0 are defined in 
Figure 3a in accordance with Takayanagi's nomenclature. 

The Parallel-Series arrangement of Figure 3b gives a 
second value for the shear modulus of the oriented 
polymer G2, 

Figure 3 Modified Takayanagi models for calculation of shear or 
tensile moduli. (a) The Series--Parallel model, (b) the Parallel-Series 
model 

Equations (1) or (3) are then used in combination with 
equation (5) and equations (2) or (4) in combination with 
equation (6) to obtain the Reuss and Voigt averages 
respectively. 

Table I summarizes the results of these calculations for 
different values of G,. We note that the theoretical values 
for the oriented samples are fairly similar, irrespective of 
whether Reuss or Voigt averaging is used and that a value 
~ 1 GPa  for G, produces reasonable agreement with the 
observed modulus of ~1.8 GPa  at -196°C.  The 
predicted value for the isotropic sample is, however, 
critically dependent on the averaging procedure. As found 
in previous studies of mechanical anisotropy where shear 
deformations predominate, the experimental results are 
more in accord with the Reuss average. In view of the large 
difference between the Reuss and Voigt results, no reliable 
estimate of the amorphous shear modulus can be made 
except to say that a value of 1 GPa  is reasonable since the 
observed value of 3 GPa  then falls between the theoretical 
Reuss and Voigt bounds, being close to the Reuss bound. 

Turning to the -50°C  data, we find that a value of 
G a ~ 0.3 GPa leads to Reuss average moduli of ~ 1 GPa  in 
accordance with the observed results for both isotropic 
and oriented samples. 

To summarize, we have shown that the similarity in the 
shear moduli of isotropic and oriented samples at 

- 5 0°C  and the greater modulus of the isotropic 
samples at - 196°C can be simply explained by taking the 
appropriate Reuss averages. 

The higher shear modulus of the isotropic samples at 
low temperatures occurs because of the contribution of 
the stiffer modes of deformation as reflected in the terms 
$33 , C33 etc. in equations (1) and (2). 

7he increase in -50°C plateau shear modulus with 
increasing draw ratio 

In our previous paper I it has been shown that the 
increase in tensile modulus with draw ratio for linear 
polyethylene can be quantitatively explained in terms of 
the increasing degree of crystal continuity. A model was 
developed which at its simplest level reduces to the 
Takayanagi model, although to explain the temperature 
dependence and obtain a precise fit to the experimental 
data, a more sophisticated treatment in terms of a short 
fibre reinforced composite is required, as will be discussed 
later. 

We will first consider the changes in - 5 0 ° C  plateau 

(8) 

On the random crystalline bridge model the volume 
fraction of continuous phase v: (termed the fibre phase by 
analogy with a fibre reinforced composite) is determined 
by calculating the weight fraction of crystalline sequences 
which link two or more adjacent lamellae. In our previous 
paper x it was shown that 

v: = Zp(2 - p) (9) 

where, as discussed above, p defines the probability that a 
crystalline sequence links two adjacent lamellae. 

We have therefore evaluated equations (7) and (8) in 
terms ofp and Z rather than ~0 and 2. This can be done by 
identifying v: with (1-2) ,  hence 

and, in addition, 
1 - 2 =- Zp(2 - p) (10) 

1 - ¢ P 2 - Z  (11) 

Equations (10) and (11) thus allow calculation of tp and 
2 for a given p and X. Density, d.s.c, and broad line n.m.r. 
data 1a'14 suggest a value for Z ~0.8 for all samples and p 
has been estimated to reach values as high as 0.4 for the 
most highly drawn samples 1'2. 

In Table 2a we show calculated values of G~ and G 2 for 
values of G a of 0.3 and 1 GPa, which were chosen to fit 
the low draw ratio results at - 5 0  ° and -196°C 
respectively. For consistency, we have taken average 
crystal shear moduli based on the Reuss and Voigt 
averaging procedures for the Series-Parallel and 
Parallel-Series cases respectively. 

It can be seen that either calculation predicts a 
significant increase in - 50°C plateau shear modulus with 
increasing crystalline continuity, although the Parallel- 
Series predicts the smaller absolute change which is more 
in agreement with the experimental data (Table 2b). 
Changes in crystalline continuity produce much smaller 
changes in the shear modulus for higher values of Ga ( ~ 1 
GPa) in accordance with the observed behaviour at 
- 196°C. Here the two calculations predict very similar 
values for the shear modulus and are in good agreement 
with the experimental data. 

Prediction of the dynamic tensile deformation behaviour 
As already mentioned, it has previously been shown that 

the tensile behaviour of these high modulus materials can 
be most simply considered in terms of the Takayanagi 
model. The structure of the materials is regarded as a 
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Tab& 2a Calculated shear moduli based on Series--Parallel model 
(G 1) or Parallel-Series model (G 2) for various values of p. Results 
are presented for G a = 0.3 GPa and 1 GPa, corresponding to -50°C 
and -196°C results respectively. All moduli are quoted in GPa 

G a=O.3GPa G a= 1 GPa 

p G1 G2 Gz G2 

0 0.96 0.96 1.75 1.75 
0.1 1.36 1.11 1.82 1.80 
0.2 1.55 1.25 1.87 1.85 
0.3 1.67 1.39 1.91 1.90 
0.4 1.75 1.53 1.95 1.94 

Table 2b Experimental values for shear modulus G' (1 Hz) as a 
function of draw ratio at --55°C and -196°C 

Shear modulus 
W = ffG"?Z,,x27tr dr dx (12) 

Draw 
ratio G' at -55°C G' at -196°C 

5.2 1.04 -- 
14.2 1.26 1.80 
16.2 1.30 1.87 
19.8 1.35 1.90 
25.0 1.40 1.95 

lamellar texture which is increasingly linked by crystalline 
bridges with increasing draw ratio. We have noted in our 
previous studies that the most appropriate model for the 
tensile behaviour is the Parallel-Series model of Figure 3b 
where the parallel crystalline element which provides the 
crystalline continuity consists of crystalline material 
which links two or more adjacent lamellae. The remaining 
lamellar material and non-crystalline material are 
considered as being in series. The rapid rise in modulus 
with increasing draw ratio is therefore attributed to the 
increase in crystalline bridge material. We have discussed 
in detail elsewhere 2'15 the essential equivalence of the two 
forms of the Takayanagi model shown in Figures 3a and 
3b, when allowance is made for the imperfect transmission 
of tensile stress caused by the finite length of the stiffening 
crystalline sequences. 

Our previous paper was primarily concerned with 
establishing the relationship between the - 50°C plateau 
modulus and the degree of crystalline continuity. In the 
present paper we wish to concentrate on the relaxation 
behaviour rather than the plateau moduli and show how 
this can also be understood in terms of a simple model. 

The a-relaxation region 
The high temperature a-relaxation is envisaged as a 

crystalline process involving simultaneous rotation and 
translation of molecular chains in both the trans lamellar 
intercrystalline bridges and the remaining lamellar 
(possibly chain folded) material. Although this behaviour 
can be represented in terms of either form of the 
Takayanagi model by a reduction in Ec, the modulus of 
the crystalline phase, it is more instructive to take up the 
analogy with an aligned short fibre composite. Not only 
does this provide a more satisfactory physical explanation 
of the a-relaxation process, it also expands the theory in a 
natural way from the one-dimensional treatments to a 
more general treatment capable of embracing both tensile 
and shear behaviour. 

We have already noted that the form of the Takayanagi 
model shown in Figure 3b appears to correspond most 
clearly to the real situation. In the extension to the short 
fibre composite, the fibre phase is the parallel crystalline 
component and the matrix phase is the remaining mixture 
oflamellar and non-crystalline material. We now propose 
that this short fibre composite model (often called the Cox 
model 16) can also provide a good basis for physical 
understanding of the magnitudes of the a and 7- 
relaxations in tensile deformation of the polymer. 

Following Cox, consider a composite consisting of a 
parallel array of fibres of radius ry packed in cylinders of 
the matrix of radius r,, (Figure 4). It is assumed that the 
energy losses depend only on shear of the matrix material. 
The energy loss per cycle W is then 

G t t  • where ,, IS the shear loss modulus of the matrix, 7,,~ is the 
shear strain in the matrix at the point r, x; and the integral 
is taken over the volume of the matrix. 

The essence of the Cox model is that the stress is 
transmitted from fibres to matrix by shear of the matrix. 
Application of a tensile stress to the overall composite 
therefore results in shear of the matrix. In a tensile 
experiment we represent these losses in shear in the matrix 
by the tensile loss modulus E" so that 

W = E" e2=r211 (13) 

where e is the magnitude of the tensile strain and ly is the 
length of the reinforcing fibres. Hence 

E " -  2G~, f f  2 
- 7 ,  x r dr dx (14) 

Matrix Fibre C ~  

It is shown in the appendix how 7r,x may be found from the 
Cox model and the integral evaluated. 

~ - 7 
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. ~  

,~ r m ~ rf 

Figure 4 The geometry of the Cox model for an aligned fibre 
composite 

POLYMER, 1982, Vol 23, March 353 



Shear and tensile relaxation in linear PE: A. G. Gibson et al. 

We have 

E,, = Gmz~_7~(~_ I ln(r.Jr :) f fll: "~ {sinh(fll: ) - fll: } 
r,. ,y\~,./  2 \ 2 J cosh2(flly/2) 

(15) 
where 

/G' \1/2/1 \ /  \1/2 
fllf=lSE~f) I ~ ) ~  21n(rf/rm)) 

The tensile storage modulus of the composite is given by 
the Cox formula 

E,=EsvI(1 tanhflls/2"] 
fllf/2 / I+Emvm (16) 

where E:, E,, are both considered as non-lossy; v:, Vm are 
the volume fraction of fibre and matrix phase respectively. 

It can be seen that the magnitude of E" depends on 
geometric factors which are constant for a given structure, 
r:, r,, and l:, and on the ratio (G'm/E:) which will be 
constant for a given structure but is also temperature 
dependent. This ratio (G'/Ey) also affects the shear lag 
factor ills which determines the effectiveness of stress 
transfer and hence directly influences the value of E'. The 
absolute magnitude of the losses is also determined by 
(r:/r,,), which relates directly to the volume fraction of the 
fibres and (Is/rs) which is the aspect ratio of the fibres. 

In the first instance the application of the model to the 
high temperature regime will be considered, i.e. from the 

- 50°C plateau upwards in temperature to include the ~- 
relaxation. For this range of temperatures the 
contribution of the matrix modulus Em to the storage 
modulus E' will be neglected. 

As discussed above the volume fraction of fibre phase is 
given by 

v: = Zp( 2 - p) 

proceeded by taking values of G~, and G~ from the 
experimental data for isotropic linear polyethylene. The 
calculations were performed on the basis of equations (15) 
and (16) for different values of p, which as we have seen 

determines v: = and also l:. The calculations were 

carried out for three different values of r:; 10, 15 and 20 A. 
Several factors were taken to have fixed values 
throughout all the calculations. These are (i) the volume 
fraction crystallinity 2, for which a value of 0.8 was chosen 
as above; (ii) the long period L, which was taken as 200 • 
which is close to the mean value obtained from small 
angle measurements; (iii) a fixed value for E: as the crystal 
modulus of linear polyethylene. A value of 315 GPa, based 
on the recent work by Tadokoro and coworkers 12 was 
taken for E: which was assumed to be temperature 
independent. 

It was found that the best overall match between the 
predicted and observed patterns of mechanical behaviour 
for both E' and tan 6 = E"/E' was obtained for r: = 15 ~,. 
These results are shown in Figures 5a and 5b and may be 
compared with the experimental results shown in Figures 
6a and 6b. These are two aspects of the correspondence 
between the predicted and experimental values which can 
be highlighted. First, the modelling does predict the 
correct magnitudes for the - 50°C plateau moduli and in 
particular the increase in plateau moduli with increasing p 
as the draw ratio increases. Note that a p value of 0.4 
(which is achieved for draw ratio ,,-25) gives a plateau 
modulus value ~ 100 GPa. Secondly, the fall in E' with 
temperature is modelled quite well, and in particular, the 
magnitude of the fall with temperature decreases with 
increasing p, as is observed. Tan 6e for the ~ relaxation is 
predicted to fall as p increases, which is consistent with the 
observed behaviour. In this respect it may readily be 
shown from equations (15) and (16) that for high 
crystalline continuity where there is good stress 
transmission 

It is the crystalline sequences which link two or more 
adjacent lamellae which form the fibre phase, and in order 
to carry out the calculations above we require the aspect 
ratio of the fibres (Is~r:) in equations (15) and (16) above. 
On the crystalline bridge model there will be a 
distribution of aspect ratios. The calculations have 
however been simplified by taking the average crystal 
length of those sequences which link two or more adjacent 
lamellae. It may readily be shown that this gives 

where L is the long period. 
There is no direct information on r:, the radius of the 

crystalline bridge sequences. This is a key parameter 
because the aspect ratio of the fibres ly/r: plays a critical 
role in determining the shear lag factor and the magnitude 
of the losses. In view of this, and the uncertainty in the 
exact values of several of the other parameters involved 
we have attempted to establish that the spirit of our 
modelling is satisfactory, rather than attempting a 
detailed fit which would inevitably involve arbitrary 
adjustment of such parameters. 

The shear modulus of the matrix phase and its 
temperature dependence were not known. We therefore 

E" tan fig 
tanbE= ~ - ~  fllf 

and therefore falls with increasing fllf. This result is 
physically reasonable, as in the limit of perfect stress 
transmission there is uniform tensile strain and no 
inhomogeneous shear. We therefore see that in this model, 
the ~ relaxation process is a consequence of shear in the 
crystalline regions of the matrix. 

In the present calculations, the predicted curves were 
obtained with values for some of the parameters which 
differ from those which we adopted in our previous paper 
where we were concerned only with prediction of the 

- 50°C plateau moduli. In the present paper a value ofz  of 
0.8 was chosen and the predicted curves of Figures 5a and 
5b imply an average shear lag factor 

~p' = 1 tanh ill f~2 
/ ts/2 

at - 5 0 ° C  of about 0.8. In our previous paper it was 
pointed out that the numerical fits were complicated by 
the problem of choosing realistic crystallinity values for 
the samples. However, in that paper we were primarily 
concerned with showing that the large increase in 
modulus with draw ratio could be attributed to the large 
increase in the factor p(2-p).  It was only necessary to 
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Figure 5 Theoretical complex tensile modulus as a function of 
temperature for different values of p. (a) The real part of the 
modulus E °. (b) Tan 6 E (tensile). (The isotropic sample data which 
were used for the matrix shear modulus are also shown) 

assume that the product Z~0' was 0.6 to give a good  
numerical fit to the - 50°C plateau moduli. In the present 
paper, to give a realistic temperature dependence for G' as 
well as a reasonable numerical fit to the - 50°C moduli, it 
was necessary to choose q~' at - 50°C with a value of --- 0.8. 
It should also be remarked that a value of Ec= 315 GPa 
has been chosen in this paper compared with 255 GPa in 
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Figure 6 Experimental tensile data for different draw ratios re- 
produced from ref 1. (Experimental points shown for isotropic 
sample only). (a) Real part of the modulus E'. (b) Tan 6 E 
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Figure 7 The increment in modulus (AE) between -50°C  and 
-196°C as a function of the modulus at -50°C.  Points are experi- 
mental data, Lines A -~ D represent the predictions of equation (16) 
with E a = 0, 5, 10, 15 GPa 

the previous paper. In view of recent developments it 
appeared most appropriate to take the recent value for the 
crystal modulus. 

The ? relaxation region 
Finally, we wish to consider the temperature region 

below - 50°C. There will be an increase in modulus with 
decreasing temperature for two reasons. First, the shear 
lag factor will increase due to the increase in G~,. Secondly, 
the second term in equation (16) will become important, 
as E ,  increases in value. It is instructive to examine the 
contribution from these two factors by adopting the 
following procedure. We denote by AE the difference 
between the value of the tensile modulus at the -50°C 
plateau and its value at - 196°C. First consider the value 
for AE calculated on the basis of equation 06) using the 
parameters for the predictions of Figure 5a, but ignoring 
the matrix contribution term E,,vm. This gives a shear lag 
contribution to AE which is shown in Figure 7 as a 
function of the -50°C plateau modulus obtained from 
the same calculation (Line A). It can be seen that this 
contribution is not sufficient to account for the observed 
increase in modulus with decreasing temperature, and we 
must conclude that the term Emvm is significantly large. 

The matrix tensile modulus Em can be estimated on the 
basis that the matrix phase consists of a mixture of 
and non-crystalline ('amorphous') material which are 
considered to be in series. Denoting the modulus of the 
amorphous material by E, we have 

Z(1-p)2+(1-Z) Z(1-p) 2 ( l - z )  
- - -  ~- (18) 

E m Ec Ea 

In addition to the increase in E,, due to the increase in 
E, at low temperatures, we also have to consider the 
change in the volume fraction of the matrix v,, = (1 - vl) as 
the crystal continuity changes with increasing draw ratio. 

Both of these factors change the value of the matrix 
contribution term E,,v,,. In Figure 7 we show calculated 
curves for AE as a function of the - 50°C plateau modulus 
(which varies with crystal continuity on the draw ratio 
changes) for three values of E= at - 196°C, 5, 10 and 15 
GPa. It can be seen that the experimental data cut across 
these predicted curves, suggesting that E= increases as the 
-50°C plateau modulus increases, i.e. as the draw ratio 
increases. It appears that low draw ratio samples have 
values for Ea'-~ 3 GPa, whereas the high draw samples 
show E= ~ 10 GPa. Such values would appear realistic in 
terms of an increasing degree of amorphous orientation 
with increasing draw ratio, and are in line with modulus 
values for oriented amorphous polymers 17. In this 
connection it is worth noting that the simple Takayanagi 
Parallel-Series model with no shear lag factor at - 50°C 
would require values for E, at -196°C of ~ 15 GPa 
(based on Ec=315 GPa). 

CONCLUSIONS 

(1) The cross-over in shear modulus for isotropic and 
oriented samples in the temperature region of the 7- 
relaxation has been explained in terms of Reuss and Voigt 
averaging procedures. 

(2) The increase in the -50°C plateau shear modulus 
with increasing draw ratio can be predicted by 
Takayanagi models, on the basis of the increasing degree 
of crystal continuity. 

(3) The temperature dependence of the dynamic 
mechanical tensile behaviour has been satisfactorily 
modelled by a simple extension of the Cox short fibre 
composite model. For the :t-relaxation, the modelling 
predicts the correct magnitudes for the -50°C plateau 
moduli, the fall in E' with temperature and the fall in tan 6E 
with increasing crystal continuity. 

(4) In the case of the 7 relaxation, it appears that there 
are two mechanisms for the change in modulus and hence 
for tan 6e. The first is an increase in the efficiency of stress 
transfer with falling temperature due to quenching of 
molecular motions. These are probably predominantly if 
not entirely in the non-crystalline regions. Secondly, the 
quenching of these molecular motions also gives rise to an 
increase in the stiffness of the non-crystalline regions, 
which then contribute directly to the overall stiffness of 
the sample. 
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APPENDIX 

This appendix outlines the calculation of the complex 
tensile modulus of an aligned fibre reinforced composite 
with a lossy matrix, in the general spirit of the Cox model. 
Since this paper was submitted for publication a previous 
attempt to determine the storage and loss moduli of short 
fibre reinforced composites by McLean and Read 18 has 
been pointed out to us. Although this appendix repeats 
part of these earlier treatments we believe that this is 
necessary if our treatment, which differs from that of 
McLean and Read, is to be made clear to the reader. 

We first briefly consider the derivation of the tensile 
modulus of a non-lossy composite. The essential 
assumptions are that the tensile stress in the matrix is 
negligible and that the shear stress at the surface of the 
fibres may be calculated by considering the idealized 
model shown in Figure 4. This represents a fibre of length 
l I and a radius r I surrounded by a cylinder of matrix 
material of radius rm chosen such that 1/lzr,, 2 is the 
average number of fibres per unit cross sectional area of 
composite. At this radius it is assumed that the tensile 
strain in the matrix is equal to the applied strain in the 
composite. Within this radius, however, the strain is non 
uniform, depending both upon x and r although it is 
assumed that strain in the fibre depends only upon x. 

Consider the change in total tensile load (P) carried by 
the fibre between x and x + 6x. This must be equal to the 
total force applied by the shear stress (z) in the matrix at 
the surface of the fibre, i.e. 

o r  

6P = - 2gri6xz(rl,x ) 

dP 
- - =  dx -2gryz(ry'x) (1A) 

Hence 0~ = z(r y,x) . r~ (4A) 
c3r G,. r 

and integrating the above equation between r I and r,. we 
obtain: 

rfz(rf,x) A r t -  ~ tn(rm/rl) (5A) 

If the vertical displacement of the matrix at r = r I is U 
and at r = r,~ is V then Ao~ = V - U and the above equation 
becomes 

z(r l,x) = G . , (V -  U)/(r fln(r,./r f)) (6A) 

substituting in equation (1A) we therefore obtain 

dP 
dx  = 2~G,.(V - U)/ln(r.,/ry) (7A) 

Hence, by differentiation, 

d2Pdx 2 - 2rcG,,,(~ V ~x)/ln(r~/ry) ,8A) 

dV 
We note that dxx is the tensile strain in the matrix at 

r = r,. which is assumed to be equal to the applied strain e. 
Also, if we assume perfect bonding between fibre and 

~-x ~, the matrix strain at r = ry, is equal to the matrix then 

strain in the fibre e I. This may be expressed in terms of P, 
r I and EI, the tensile modulus of the fibre: 

dU 
= ef = P/(EfTrrf 2) (9A) dx 

Hence, equation (8A) becomes: 

If it is assumed that no load is directly transmitted 
across the ends of the fibre then P = 0 at x = _ IH2. The 
solution of the above equation then becomes: 

In order to integrate this equation to determine the 
average load borne by the fibre we must solve for z(ry,x). 
To do this, we introduce the variable co(r,x) which 
represents the vertical displacement of any point in the 

matrix. ( ~ r  is then the shear strain in the matrix.) Hence, 

if G., is the matrix shear modulus 

t~(D 
z = ~-r" G,,, (2A) 

Also, considering the vertical equilibrium of a thin disc 
of material, extending from the surface of the fibre at r = r I 
to the general point r, if tensile stresses in the matrix are to 
be ignored we must have: 

2nr z(r,x) = 27try z(ry,x) (3A) 

where 

cosh(flx) "] 
P=eEIT~rf 2 1 cosh(fllf/2)/ 

F 2 . ( a m ~  1'/2 

Lry21n~,./ry) \ E f  ]J  

(11A) 

and the mean stress in the fibre 6" is given by 

~/2 1/2 
P eEy 

If cosh(fll f/2) J 
- 1/2 - l j2 

(12A) 

This integrates to give 

6.i = E i e (  1 tanh(fllJ2)'] 
fill/2 ] (13A) 
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Since there is no tensile stress in the matrix, the average 
stress tr over the cylinder of radius r,, is given by V I 5I 
where Vy is the volume fraction of the fibres. The apparent 
tensile modulus E is therefore given by: 

o r  

a Of 
E = e =  V i e  (14A) 

E = IGEI(I tanh('S/I/2)']#ll/2 J (15A) 

differentiating the solution for P (equation (11A)). This 
yields 

dP ,~ 2 ,~ sinh(flx) 
d x -  eLflZrs P C ~ 2 )  (19A) 

Substituting from equations (1A) and (3A) we have 

fl sinh(flx) 
2nrz(r,x = e Einr y 2 cosh(flly/2) (20A) 

Some account may be taken of the tensile stress in the 
matrix if we include the term limE,, in the above equation 
where Vm is the volume fraction of the matrix and Er, is its 
tensile modulus. This then yields the equation quoted in 
the main text. 

We note that for efficient reinforcing action ill s >> 1 
which is obtained with high densities of high aspect ratio 
fibres in a matrix with a high shear modulus. 

To extend this analysis to deal with a lossy matrix we 
make the basic assumption that all the energy dissipation 
occurs as a result of the shear deformation in the matrix 
phase. As noted in the text, if G~, is the imaginary part of 
the matrix shear modulus, then the energy loss per cycle 
(W) is given by: 

1f12 r. 

w = f f G 2 7 2 2 n r d r d x  (16A) 

- 1f12 r I 
where 7 is the shear strain in the matrix at the point (r,x). 

In a tensile experiment, however, one would interpret 
this energy loss as the imaginary part of the tensile 
modulus of the composite (E"). Hence 

W = E"e 2 7Zrra 2 If (17A) 

Equating equations (16A) and (Z7A) yields 

l;_/2 r 
rm 21y r dr dx 

-ll/2 r I 

(18A) 

The previous calculation may be extended to provide 
the ratio of shear strain to the applied tensile strain by 

The shear strain 7 is simply the shear stress r divided by 
the matrix shear modulus. Hence: 

y_ = E yr y 2 fl sinh(flx) 
(21A) 

e 2G,. cosh(flly/2) r 

This is essentially the expression which we require to 
substitute into the integral of equation (18A). Note, 
however, that we are now dealing with a viscoelastic 
system and that the ratio required in equation (i 8A) is that 
of the absolute magnitude of the shear and tensile strains. 
We compute this from equation (21 A) by considering only 
the real part of the matrix shear modulus (i.e. we equate 
Gm with G'). This is an acceptable procedure for small loss 
angles. 

The full expression for E" therefore becomes 

tf/z 
E" 2G' . (Efr f2~  2. f12 f r!.  

=rm2l,. \ 2 ~ , ]  cosh2(flll/2) sln~(flX) d rdx  

- ly/2 (22A) 

This may be integrated to give the result quoted in the 
main text. 

This approach differs fundamentally from that of 
McLean and Read in that the loss mechanism is 
specifically assumed to be associated with the shear 
deformation of the matrix and is not associated with its 
tensile properties. We believe this to be an important 
distinction since the matrix in our case consists of aligned 
crystalline and amorphous material and, certainly in the 
case of % relaxation, we believe this to be a crystalline 
shear process. 
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